Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch
نویسندگان
چکیده
Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.
منابع مشابه
Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via β-catenin
Histone cell cycle regulator (HIRA) is a histone chaperone and has been identified as an epigenetic regulator. Subsequent studies have provided evidence that HIRA plays key roles in embryonic development, but its function during early neurogenesis remains unknown. Here, we demonstrate that HIRA is enriched in neural progenitor cells, and HIRA knockdown reduces neural progenitor cell proliferati...
متن کاملDifferential regulation of repeated histone genes during the fission yeast cell cycle
The histone genes are highly reiterated in a wide range of eukaryotic genomes. The fission yeast, Schizosaccharomyces pombe, has three pairs of histone H3-H4 genes: hht1+-hhf1+, hht2+-hhf2+ and hht3+-hhf3+. While the deduced amino acid sequences are identical, it remains unknown whether transcriptional regulation differs among the three pairs. Here, we report the transcriptional properties of e...
متن کاملCardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis
HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defe...
متن کاملHIRA Is Required for Heart Development and Directly Regulates Tnni2 and Tnnt3
Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mo...
متن کاملHira-Dependent Histone H3.3 Deposition Facilitates PRC2 Recruitment at Developmental Loci in ES Cells
Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions enriched with the histone variant H3.3. Here, we show that, in mouse embryonic stem cells (ESCs), H3.3 is required for proper establishment of H3K27me3 at the promoters of dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 48 شماره
صفحات -
تاریخ انتشار 2016